Page 1

QUESTION BANK 2019

SIDDHARTH GROUP OF INSTITUTIONS: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

SYNCHRONOUS GENERATORS 1. A) Explain the principle of operation of Synchronous Generator. 5M B) Compare between DC Generator and AC Generator. 5M 2. Explain the constructional details of salient pole and Round rotor synchronous machines. 10M 10M 3. Explain the different types of Armature windings. 4. Write short notes on a) Pitch factor 5M b) Distribution factor 5M 5. Derive the EMF equation of an Alternator 10M 6. Define harmonics and how the harmonics are generated in EMF wave form? How they are 10M suppressed? 7. Define Armature reaction? Discuss the armature reaction at UPF, lagging PF and leading PF with necessary wave forms. 10M 8. Calculate the RMS value of induced voltage per phase and line of a 10pole, 3Ø, 50HZ, alternator with 2 slots per pole per phase and 4 conductors per slot. If the coil span is 150° electrically. If the flux per pole has a fundamental component of 0.12wb and 20% of 3rd harmonic component 10M 9. Find the number of armature conductors are connected in series per phase required for the armature has 3-phase, 10 pole alternator with 90 slots, the winding is to be star connected with a given line voltage of 11KV. Assume flux/pole is 0.16wb. 10M 10. Define a) Armature resistance 2Mb) Leakage reactance 2Mc) Armature reactance 2Md) Synchronous reactance 2Me) Synchronous impedance 2M

Subject with Code: Electrical Machines-III (16EE220)

Year & Sem: III-B.Tech. & I-Sem.

Course & Branch: B. Tech. - EEE

Regulation: R16

<u>UNIT –I</u>

<u>UNIT –II</u>

REGULATION OF SYNCHRONOUS GENERATORS

1. How do you calculate Synchronous reactance experimentally with suitable tests						ts 10	М	
2. Explain the procedure	e for calcu	lation vo	oltage reg	gulation l	oy synchro	nous impe	dance method	
with Phasor diagram							101	М
3. A 3-phase star conne	cted altern	nator is ra	ated at 16	500 kVA	and synch	ronous rea	ctance are 1.5 Ω	
and 30 Ω , respectivel	y. Calcula	te the vo	ltage reg	ulation b	y EMF me	ethod for a	load of 1280KW at	
a) 0.8PF lagging	b) UPF		c) 0.8PF	leading			10	Μ
4. The following test re	sults are o	btained of	on a 3-Ph	nase, 6600	OV, 50Hz s	star connec	ted alternator as foll	ows
$I_{f}(A)$	16	25	37.5	50	70			
V _{oc} (V	') 3100	4900	6600	7500	8300			
A field current of 20	A is neces	sary to c	irculate	the full lo	ad current	on short c	ircuit of the alternate	or.
Determine voltage re	egulation b	by MMF	method	at				
a) 0.8PF lagging	b) 0.8P	F leading	g c) UP	F			10	M
5. a) Explain the proceed	lure for co	onstructio	on of pot	ier triang	le by ZPF	method.	51	М
b) How do you calcu	late the no	o load vo	ltage and	d voltage	regulation	by ZPF m	ethod with phasor	
diagram?							51	М
6. A 11kV, 1000 KVA,	3-phase s	star conn	ected alte	ernator h	as a resista	nce of 2 Ω	/phase. The O.C and	I FL
ZPFC are given belo	w. Find th	ne voltag	e regulat	ion of an	alternator	for FL cur	rent at 0.8PF Laggin	ıg
by potier method							10)M
	$I_{f}(A)$	40	50	110	140	180		
	$V_{oc}(V)$	5800	7000	12,500	13,750	15,000		
	$V_{zpf}(V)$	0	1500	8500	10,500	12,500		
7. By using the above of	lata calcul	ate the v	oltage re	gulation	by ASA m	ethod. Con	npare the results and	1
comment them.							10)M
8. Explain the procedure	e for calcu	ilation of	f voltage	regulatio	n of salien	t pole Alte	rnator and draw the	
suitable phasor diagr	am and as	sumption	ns.				10	0M
9. A 3-phase star conne	cted synch	ronous g	generator	supplies	a current	of 10A hav	ving phase angle of 2	20°
Lagging at 400 V. Fi	nd the load	d angle a	and comp	onents o	f armature	current. If	$X_d = 10\Omega, X_q = 6.5\Omega.$	
Assume R _a is neglect	ed. Find the	he no loa	ad EMF a	and volta	ge regulati	on.	10)M
10. a) Define synchronous impedance as per O.C and S.C tests						2	M	
b) What is the meaning of potier reactance						2	2M	
c) Enumerate the lost of methods to find voltage regulation in synchronous machines						achines 2	M	
d) Express the formulae for direct and quadrature reactance.						2	M	
e) Define load angle and phase angle.						2	2M	

<u>UNIT-III</u>

PARALLEL OPERATION OF SYNCHRONOUS GENERATORS

1. a) Define infinite bus bar? Explain synchronization of alternator with infinite bus bar.				
b) Necessity of parallel operation of alternators.	5M			
2. Derive the expression for power developed of an alternator connected to infinite bus bar				
with Power angle characteristics.	10M			
3. Derive the expression for synchronizing current, power and torque	10M			
4. A 5MVA, 10kV, 1500 rpm, 50HZ alternator runs in parallel with other machines. Its r	reactance			
drop is 20%. Find the synchronizing power per unit mechanical degree of displacement	and the			
corresponding torque at				
a) No load b) Full load at 0.8PF lagging	10M			
5. What is meant by synchronization of alternators? Discuss any two methods of synchroniz	ation of			
alternator.	10M			
6. Derive the expression for circulating current for dissimilar alternators connected by a				
common load	10M			
7. Two 1-phase alternators are operate in parallel and sharing a load impedance of (3+j-	4)Ω if			
the impedances of each machine is $(0.2+j2) \Omega$ and emf's are $(200+j0) V$ and (22)	0+j0) V			
respectively. Determine	10M			
a) Terminal voltage b) Current c) Power factor d) Output power of each mach	nine			
8. Explain in detail about 'V'curve and ' Λ 'curve of a synchronous motor	10M			
9. Two 3-phase alternators are working in parallel with the following particulars:				
Alternator 1: $Z_1 = (0.2+j2)$ ohms/phase; E1 = (2000+j0) V/phase				
Alternator 2: $Z_2 = (0.2+j2)$ ohms/phase; $E2 = (2200+j100)$ V/phase				
Load: $Z_L = (3+j4)$ ohms/phase.				
Determine the kW output and power factor of each alternator.	10M			
10. a) List out the conditions for parallel operation of alternators	2M			
b) What are the methods used for synchronization of alternators	2M			
c) Write the formulae for power developed per phase of an alternator connected to an infi	inite bus			
bar	2M			
d) Draw the power angle characteristics of synchronous machine	2M			
e) Mention the importance of synchronizing current	2M			

UNIT-IV

SYNCHRONOUS MOTOR

1.	a) Explain the theory of operation of synchronous motor	5M
	b) Compare between synchronous motor and 3-phase induction motor	5M
2.	Draw and explain the phasor diagram of synchronous motor and derive the back EMF.	10M
3.	Derive the expression for power developed by the synchronous motor.	10M
4.	Explain the variation of current and power factor with excitation with suitable curves.	10M
5.	Write short notes on	
	a) Synchronous condenser	5M
	b) Hunting and elimination of hunting	5M
6.	Briefly discuss about the starting methods of synchronous motor with suitable diagrams	10M
7.	a) A sub-station operating at full load of 1200 kVA supplies a load at 0.7 p.f. lagging. Call rating of synchronous condenser to raise the substation power factor to 0.9 lagging.	culate the
	h) Explain the working operation of synchronous induction motor	5M
8	A 3-phase 6600V 50Hz star connected synchronous motor takes 50A current from mains	The
0.	Resistance and synchronous reactance are 10 and 200 respectively	. 1110
	i) Power supplied to the motor	
	ii) Induced emf /nhase at 0.8PE lagging and 0.8PE leading	
	iii) Rotor retardation angle	10M
0	A 2 $\frac{320}{10}$ star connected superconduct mater has superconduct reacting of 50/nba	Town
9.	input to the motor is 1000KW at a normal voltage and a line induced emf of 4000V. Calci	ilata tha
	operating power factor and line current	
10	a) What is meant by supersonaus condenser?	10M
10.	a) what is meant by synchronous condensel?	
	b) why the synchronous motor is a non self starting?	ZIM
	c) Write the formulae for back EMF of synchronous motor at leading p.f. and lag p.f.	2M
	d) What is the purpose of damper winding used in synchronous motor?	2M
	e) List out the application of synchronous motor.	2M

QUESTION BANK 2016

UNIT-V

SINGLE PHASE AND SPECIAL MOTORS

1. Explain the constructional details of single phase induction motor with neat diagram			
2. Explain Double field revolving theory.	10M		
3. Explain the working of split phase induction motor? List out the advantages, disadvantages applications.	and 10M		
4. Explain the working operation of capacitor start and capacitor run induction motor. List			
 out the advantages, disadvantages and applications. 5. Briefly discuss about the shaded pole IM with circuit diagram mention their applications. 6. Discuss the working operation of A.C Series motor? What are the drawbacks? 7. Explain the working operation of Universal motor and list out the applications 	10M 10M 10M 10M		
8. Write short notes on	514		
a) Reluctance motor	SIM		
b) Hysteresis motor	5M		
9. Explain the working operation of stepper motor? How do you calculate stepping angle and	list		
out the applications.	10M		
10. a) State double field revolving theory.	2M		
b) Drawbacks of split phase induction motor	2M		
c) Compare permanent capacitor motor and two value capacitor motor	2M		
d) Write the current flow direction of shaded pole induction motor	2M		
e) Define stepping angle and number of steps for revolution	2M		